Copied to
clipboard

G = C923S3order 486 = 2·35

3rd semidirect product of C92 and S3 acting faithfully

metabelian, supersoluble, monomial

Aliases: C923S3, C9⋊C96S3, C9⋊S35C9, (C3×C9)⋊6C18, C9.5(S3×C9), C923C31C2, C32.9(S3×C9), C32⋊C9.20S3, (C32×C9).10C6, C33.60(C3×S3), C3.10(He3.4S3), C3.4(C9×C3⋊S3), (C3×C9⋊S3).5C3, (C3×C9).3(C3⋊S3), (C3×C9).39(C3×S3), C32.30(C3×C3⋊S3), SmallGroup(486,139)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C923S3
C1C3C32C3×C9C32×C9C923C3 — C923S3
C3×C9 — C923S3
C1C3

Generators and relations for C923S3
 G = < a,b,c,d | a9=b9=c3=d2=1, ab=ba, cac-1=ab3, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 300 in 69 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C9, C32, C32, D9, C18, C3×S3, C3⋊S3, C3×C9, C3×C9, C3×C9, C33, C3×D9, S3×C9, C9⋊S3, C3×C3⋊S3, C92, C92, C32⋊C9, C32⋊C9, C9⋊C9, C9⋊C9, C32×C9, C9×D9, C32⋊C18, C9⋊C18, C3×C9⋊S3, C923C3, C923S3
Quotients: C1, C2, C3, S3, C6, C9, C18, C3×S3, C3⋊S3, S3×C9, C3×C3⋊S3, C9×C3⋊S3, He3.4S3, C923S3

Smallest permutation representation of C923S3
On 54 points
Generators in S54
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 41 35 4 44 29 7 38 32)(2 42 36 5 45 30 8 39 33)(3 43 28 6 37 31 9 40 34)(10 47 23 16 53 20 13 50 26)(11 48 24 17 54 21 14 51 27)(12 49 25 18 46 22 15 52 19)
(2 8 5)(3 6 9)(10 13 16)(11 17 14)(20 23 26)(21 27 24)(28 31 34)(30 36 33)(37 40 43)(39 45 42)(47 50 53)(48 54 51)
(1 18)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(9 17)(19 44)(20 45)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 51)(29 52)(30 53)(31 54)(32 46)(33 47)(34 48)(35 49)(36 50)

G:=sub<Sym(54)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,41,35,4,44,29,7,38,32)(2,42,36,5,45,30,8,39,33)(3,43,28,6,37,31,9,40,34)(10,47,23,16,53,20,13,50,26)(11,48,24,17,54,21,14,51,27)(12,49,25,18,46,22,15,52,19), (2,8,5)(3,6,9)(10,13,16)(11,17,14)(20,23,26)(21,27,24)(28,31,34)(30,36,33)(37,40,43)(39,45,42)(47,50,53)(48,54,51), (1,18)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(19,44)(20,45)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,51)(29,52)(30,53)(31,54)(32,46)(33,47)(34,48)(35,49)(36,50)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,41,35,4,44,29,7,38,32)(2,42,36,5,45,30,8,39,33)(3,43,28,6,37,31,9,40,34)(10,47,23,16,53,20,13,50,26)(11,48,24,17,54,21,14,51,27)(12,49,25,18,46,22,15,52,19), (2,8,5)(3,6,9)(10,13,16)(11,17,14)(20,23,26)(21,27,24)(28,31,34)(30,36,33)(37,40,43)(39,45,42)(47,50,53)(48,54,51), (1,18)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(19,44)(20,45)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,51)(29,52)(30,53)(31,54)(32,46)(33,47)(34,48)(35,49)(36,50) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,41,35,4,44,29,7,38,32),(2,42,36,5,45,30,8,39,33),(3,43,28,6,37,31,9,40,34),(10,47,23,16,53,20,13,50,26),(11,48,24,17,54,21,14,51,27),(12,49,25,18,46,22,15,52,19)], [(2,8,5),(3,6,9),(10,13,16),(11,17,14),(20,23,26),(21,27,24),(28,31,34),(30,36,33),(37,40,43),(39,45,42),(47,50,53),(48,54,51)], [(1,18),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(9,17),(19,44),(20,45),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,51),(29,52),(30,53),(31,54),(32,46),(33,47),(34,48),(35,49),(36,50)]])

63 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H6A6B9A···9I9J···9O9P···9AS18A···18F
order1233333333669···99···99···918···18
size1271122266627272···23···36···627···27

63 irreducible representations

dim111111222222266
type++++++
imageC1C2C3C6C9C18S3S3S3C3×S3C3×S3S3×C9S3×C9He3.4S3C923S3
kernelC923S3C923C3C3×C9⋊S3C32×C9C9⋊S3C3×C9C92C32⋊C9C9⋊C9C3×C9C33C9C32C3C1
# reps1122661126218636

Matrix representation of C923S3 in GL6(𝔽19)

1160000
081000
8120000
0001160
000081
0008120
,
500000
050000
005000
000400
000040
000004
,
100000
12110000
707000
000100
0001170
00018011
,
000100
000010
000001
100000
010000
001000

G:=sub<GL(6,GF(19))| [11,0,8,0,0,0,6,8,12,0,0,0,0,1,0,0,0,0,0,0,0,11,0,8,0,0,0,6,8,12,0,0,0,0,1,0],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,12,7,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,11,18,0,0,0,0,7,0,0,0,0,0,0,11],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0] >;

C923S3 in GAP, Magma, Sage, TeX

C_9^2\rtimes_3S_3
% in TeX

G:=Group("C9^2:3S3");
// GroupNames label

G:=SmallGroup(486,139);
// by ID

G=gap.SmallGroup(486,139);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,4755,453,3244,3250,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^9=c^3=d^2=1,a*b=b*a,c*a*c^-1=a*b^3,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽